

Analisis *Aircraft Routing* dengan Mempertimbangkan Ketersediaan Pesawat ATR di Kawasan Indonesia Timur

Maulin Masyito Putri, Ayu Rahmawati Persada, Amanda Dewi Cahyani

Received: 3 June 2025 Accepted: 10 September 2025 Published: 11 November 2025

Keywords: Flight Scheduling, Fleet Assignment, Aircraft Routing, Sit Connection, Indonesia Timur

ABSTRAK

Moda transportasi udara merupakan alternatif moda transportasi untuk masyarakat yang membutuhkan perpindahan barang maupun manusia dengan cepat. Aircraft routing bertujuan untuk menentukan rute pesawat dengan biaya operasi minimum. Penelitian ini mengembangkan model aircraft routing pada pesawat tipe ATR di Kawasan Indonesia Timur khususnya wilayah Maluku dan Papua dengan tujuan untuk memaksimumkan utilitas dari pesawat. Pada penelitian ini menggunakan flight scheduling yang telah tersedia dan membuat kombinasi alternatif rute untuk fleet assignment. Alternatif kombinasi rute dibangun dengan mempertimbangkan flight scheduling dan beberapa batasan seperti bandara home base, sit connection dan jam operasional bandara. Kemudian akan dilakukan pemilihan rute berdasarkan tingkat utilisasi tertinggi yang berguna untuk memaksimalkan penggunaan pesawat dengan mempertimbangkan ketersediaan pesawat Berdasarkan hasil penelitian ini, dari empat skenario yang telah dibuat didapatkan kombinasi rute 5 pesawat dimana 3 pesawat untuk wilayah Maluku dan 2 pesawat untuk wilayah Papua. Kombinasi rute tersebut didapatkan dengan sit connection 30 menit dan total utilisasi sebesar 98,68%.

PENDAHULUAN

Penjadwalan merupakan salah satu aspek yang harus di miliki suatu perusahaan termasuk perusahaan dalam bidang transportasi, penjadwalan tersebut berfungsi untuk menertibkan beberapa Penjadwalan dalam perusahaan transportasi berfungsi untuk mengatur tugas yang akan di kerjakan setiap masing masing kendaraan, salah satunya perusahaan transportasi udara yang akan di bahas dalam penelitian ini. Sebuah maskapai penerbangan akan memiliki penjadwalan pesawat untuk melayani beberapa destinasi yang telah ditentukan. Menurut Bazargan (2016), proses perencanaan penerbangan memiliki empat tahapan yaitu flight scheduling, fleet assigment, aircraft routing, and crew scheduling [1]. Maskapai

memiliki beberapa pertimbangan untuk sebuah penjadwalan, yaitu market demand forecast, regulasi, behaviour of competing, karakteristik pesawat dan tenaga kerja yang tersedia. Dengan adanya flight scheduling maskapai dapat mengetahui frekuensi dan load factor pada setiap penerbangan. Load factor merupakan prosentase kursi pesawat yang terisi. Berdasarkan penjelasan tersebut, untuk membuat aircraft routing harus melalui beberapa tahap sebelumnya.

Fleet assignment merupakan keputusan strategis yang dilakukan sebuah maskapai dengan mempertimbangkan jumlah dan tipe pesawat yang diperlukan untuk beroperasi[2]. Fleet assignment merupakan pemilihan tipe pesawat yang digunakan sesuai dengan kebutuhan dan dapat memaksimalkan

profit maskapai. Pada *fleet assignment* mempertimbangkan *turn-around time*. *Turn-around time* merupakan waktu dibutuhkan mulai pesawat sampai di bandara hingga pesawat *take off*[1]. Selain mempertimbangkan *turn-around time*, maskapai perlu mempertimbangkan jam pelayanan dari bandara.

Aircraft routing merupakan proses penugasan suatu rute setiap pesawat pada flight legs[1]. Tujuan aircraft routing untuk memaksimalkan pendapatan atau meminimalkan biaya operasi dengan mempertimbangkan beberapa hal seperti cakupan penerbangan. Aircraft routing juga bertujuan untuk meminimalkan delay pada sebuah pesawat dalam aircraft routing problem[3],[4]. Dalam penerbangan dapat terjadi kendala yang tidak di inginkan, sehingga untuk mengantisipasinya pesawat harus melakukan maintanance. Dalam penentuan aircraft routing maskapai h[1]arus mempertimbangkan jadwal maintanance setiap pesawat. Pada routing cycles selain pesawat harus kembali pada titik awal, pesawat akan di jadwalkan untuk maintanance pada bandara yang memiliki fasilitas tersebut.

Pesawat tipe ATR merupakan pesawat komersial dengan kapasitas kecil. Terdapat dua tipe pesawat ATR, yaitu ATR42 dengan kapasitas 40-50 penumpang dan ATR72 dengan kapasitas 78 penumpang. Keunggulan ATR adalah dapat menjangkau bandara kecil dengan landasan pacu kurang dari 1600 meter dengan jarak tempuh dari 900 NM dan dapat menghemat bahan bakar hingga 50% dibandingkan pesawat tipe lainnya. Pesawat ATR sangat sesuai untuk melakukan penerbangan di kawasan Indonesia Timur yang memiliki bandara kecil.

Kawasan Indonesia Timur yang memiliki kondisi geografis sangat rumit karena terdapat banyak pegunungan dan kepulauan. Masih banyak daerah yang belum terhubung dengan moda transportasi yang memadai dan khusus untuk moda transportasi udara hanya ada di kota-kota besar dengan jumlah penerbangan yang sangat jarang karena jumlah permintaan dan bandara yang masih sangat sedikit. Dalam penelitian ini akan membahas tentang aircraft routing problem dengan tujuan memaksimumkan utilisasi pesawat yang melayani rute tertentu. Penelitian ini fokus menyelesaikan aircraft routing problem pesawat ATR di kawasan Indonesia Timur dengan mempertimbangkan ketersediaan pesawat yang bertujuan memaksimumkan utilitasi pesawat.

Sejumlah penelitian terdahulu mengenai aircraft routing problem telah dilakukan dengan berbagai pendekatan dan tujuan yang berbeda. Penelitian oleh Yan dan Kung (2014) menekankan pentingnya meminimalkan delay dalam perencanaan rute pesawat, dengan pendekatan row and column generation yang terbukti lebih efektif dibandingkan optimasi stokastik dalam menurunkan tingkat keterlambatan

penerbangan[4]. Sementara itu Safei dan jardine, (2017) mengembangkan pendekatan yang mengintegrasikan perencanaan rotasi armada dan jadwal perawatan pesawat untuk meminimalkan ketidakpastian penerbangan non-revenue[6]. Di sisi lain, Kannon dkk. (2014) mengkaji aircraft routing dalam konteks militer dengan fokus pada kebutuhan pengisian bahan bakar di udara (aerial fueling)[7].

Sementara itu penelitian ini memberikan pendekatan yang berbeda dengan menekan kan pada optimasi utilitas armada pesawat ATR milik PT Garuda Indonesia untuk rute-rute domestik di kawasan Maluku dan Papua. Fokus utilisasi armada dalam konteks komersial domestik belum menjadi perhatian utama dalam studi-studi sebelumnya, yang umumnya lebih menekankan pada delay, profit, atau aspek teknis seperti refueling. Pendekatan berbasis wilayah geografis terpencil (Maluku dan Papua) serta tipe pesawat ATR yang dilakukan pada penelitian ini jarang disentuh dalam penelitian aircraft routing. Penelitian ini mempertimbangkan jumlah pesawat minimum, waktu operasional bandara, sit connection, serta penjadwalan berdasarkan rute dua hari sekali, yang mencerminkan kondisi riil operasional maskapai nasional. Dengan demikian, penelitian ini memberikan kontribusi baru dalam ranah manajemen operasional maskapai penerbangan, khususnya mengoptimalkan rute pesawat berdasarkan utilisasi armada, yang disusun secara realistis, terukur, dan aplikatif.

METODOLOGI PENELITIAN

Penelitian ini menggunakan pendekatan kuantitatif dengan metode optimasi berbasis integer linear programming (ILP) untuk menyelesaikan masalah penugasan rute pesawat (aircraft routing). Pendekatan ini dipilih karena mampu memberikan solusi optimal yang terukur terhadap kombinasi rute pesawat dengan mempertimbangkan keterbatasan armada dan operasional bandara. Dalam konteks ini, metode fleet assignment dipilih dibandingkan metode lain seperti metaheuristik (misalnya Genetic Algorithm, Simulated Annealing), karena memiliki keunggulan dalam menghasilkan solusi deterministik dan dapat dievaluasi secara matematis [8]. Fleet assignment berbasis ILP memberikan kejelasan dalam formulasi fungsi objektif dan batasan yang sesuai dengan kondisi nyata operasional maskapai. Selain itu, metode ini lebih efisien dalam skenario dengan ukuran masalah yang masih terukur (rute terbatas, jumlah pesawat tetap, dan jadwal yang diketahui), serta mudah diintegrasikan dengan sistem penjadwalan penerbangan yang sudah ada.

1. Fleet Assignment

Menurut Thengvall, Yu and Bard (2001) setiap tipe pesawat memiliki karakteristik dan biaya yang berbeda, seperti kapasitas tempat duduk, berat saat pendaratan, kapasitas kursi, kru, pemeliharaan, dan bahan bakar[5]. Menurut Barnhart et al. (1998) fleet assignment merupakan keputusan strategis yang dilakukan sebuah maskapai dengan mempertimbang kan jumlah dan tipe pesawat yang diperlukan untuk beroperasi[2].

Penentuan asumsi turn-around time setiap masing-masing pesawat sangat dibutuhkan sebagai salah satu dasar fleet assignment. Turn-around time adalah waktu minimum yang dibutuhkan pesawat dari landing sampai akan dilakukannya take off. Beberapa hal yang termasuk dalam turn-around time adalah waktu yang diperlukan pesawat masuk ke gate, penurunan penumpang dan bagasi, menaikan penumpang dan bagasi, pembersihan pesawat, dan lain sebagainya. Rute suatu pesawat dapat dikatakan valid apabila dapat mengakomodasi kebutuhan turn-around time setiap penerbangan[1]. Tujuan utama dari fleet assignment adalah mendapatkan rute pesawat dengan biaya operasional minimum. Biaya operasional tergantung pada tipe pesawat yang ditugaskan untuk penerbangan. Berikut adalah beberapa istilah dalam *fleet assigment* [1]:

- ASM (ASK): Available Seat Miles (Kilometers) merupakan kapasitas sebuah maskapai setiap tahun dengan mengacu pada jumlah kursi yang tersedia dikalikann dengan jumlah mil (kilometer) kursi pada saat penerbangan.
- RPM (RPK) : Revenue Passenger (Kilometers) merupakan pendapatan yang diperoleh dengan total penumpang yang telah membayar dan berhasil melakukan penerbangan.
- Yield: Berapa banyak pendapatan per mil. Hal ini diperoleh dengan cara membagi total pendapatan dengan RPM (RPK).
- RASM (RASK): Revenue per Available Seat Mile (Kilometers) merupakan pendapatan per seat yang tersedia
- CASM (CASK): Cost per Available Seat Mile (kilometers) merupakan biaya per seat yang tersedia merupakan biaya rata-rata untuk penerbangan satu

Berikut cara untuk menghitung biaya operasi penerbangan:

(1) biaya operasional

= CASM x Jarak Tempuh x Jumlah kursi pesawat

2. Aircraft Routing

Pada tahap ini akan mengidentifikasi pesawat setiap flight leg. Tujuan utama aircraft routing adalah meminimalkan biaya operasi dengan mempertimbangkan beberapa hal dan memaksimalkan profit. Aircraft routing dilakukan pada setiap tail number yang dimiliki maskapai dengan beberapa rute yang telah ditentukan. Setiap tail number akan kembali pada bandara awal dengan memperhatikan maintenance base yang dimiliki maskapai.

Pada aircraft routing terdapat siklus yang dilakukan ketika pesawat terbang dimulai dari kota mana dan akan berakhir pada kota asalnya dengan waktu maksimal tertentu dan menjadwalkan untuk maintenance. Contoh kasus aircraft routing, dengan waktu siklus satu hari dan tiga hari.

Tabel 1. Aircraft Routing Dalam 1 Hari

FLIGHT NO.	DEP- ARR	DEP TIME	ARR TIME	HRS	FLEET TYPE		
DAY 1							
GA308	CGK- SUB	9:14	10:25	1:11	B738		
GA313	SUB- CGK	11:37	12:47	1:10	B738		

Gambar 1. Aircraft Routing dalam 1 Hari

Berdasarkan hasil aircraft routing di atas dapat diketahui bahwa pesawat melakukan perjalanan dari bandara CGK (Bandara Internasioan Soekarno Hatta) menuju SUB (Bandara Internasional Juanda) dan kembali lagi pada CGK (Bandara Internasional Soekarno Hatta) dalam satu hari. Dimana letak maintenance base di bandara CGK (Bandara Internasional Soekarno Hatta). Berdasarkan routing cycles diatas dapat diketahui bahwa pesawat akan bermalam di CGK (Bandara Internasional Soekarno Hatta) pada hari kedua untuk melakukan maintenance.

Berdasarkan Bazargan (2016) dengan fungsi tujuan untuk meminimalkan biaya dengan beberapa batasan seperti berikut[1].

Fungsi Tujuan:

$$Minimum \sum_{j \in R} c_j x_j \tag{2}$$

Batasan

$$\sum_{i \in P} a_{i,j} x_j = 1 \qquad \forall i \tag{3}$$

$$\sum_{j \in R} a_{i,j} x_j = 1 \qquad \forall i$$

$$\sum_{j \in R} x_j \le N$$
(4)

$$x_i \in \{0,1\} \quad \forall j \tag{5}$$

Notasi:

```
 \begin{array}{ll} j & : \text{indeks rute } (j=1,2,...R) \\ \text{R} & : \text{himpunan rute} \\ \text{i} & : \text{indeks } \textit{flight number } (i=1,2,...F) \\ F & : \text{himpunan } \textit{flight number} \\ c_j & : \text{biaya operasional rute ke } j \\ \text{N} & : \text{jumlah pesawat yang tersedia} \\ a_{ij} = \begin{cases} 1, jika \ flight \ ke \ i \ melayani \ rute \ ke \ j \\ 0, jika \ tidak \end{cases} \\ x_j = \begin{cases} 1, jika \ rute \ ke \ j \ terpilih \\ 0, jika \ tidak \end{cases}
```

Fungsi tujuan (2) model ini adalah untuk meminimumkan biaya operasional dari rute j yang terpilih. Batasan pertama (3) bertujuan untuk memastikan setiap *flight number* ke *i* melayani rute ke *j*. Batasan kedua (4) memastikan jumlah pesawat yang ditugaskan tidak melebihi jumlah pesawat yang tersedia. Batasan terakhir (5) untuk memastikan nilai biner pada *decision variable*. Asumsi yang digunakan pada penelitian ini adalah tidak ada perubahan jumlah pesawat dan tidak ada penutupan rute. Penelitian ini juga memiliki batasan yakni objek penelitin menggunakan pesawat ATR, rute penerbangan di daerah Maluku dan Papua, penjadwalan yang dilakukan hanya 30 hari, dan tidak mempertimbangkan kondissi cuaca yang buruk.

Langkah-langkah penelitian ini sebagai berikut.

1. Pengumpulan Data:

- a. Data jadwal penerbangan wilayah Maluku dan Papua.
- b. Informasi jam operasional bandara yang diakses dari publikasi otoritas bandara lokal.
- c. Letak home base pesawat. Home base untuk wilayah Maluku adalah di Bandara Patimura, Ambon. Kemudian home base untuk wilayah Papua berada di Bandara Douw Aturure, Nabire.
- d. Waktu *sit connection*, dimana pada penelitian ini digunakan waktu *sit connection* nya 30 dan 40 menit
- e. Jumlah dan tipe pesawat (khusus ATR).

Berdasarkan data-data tersebut, parameter yang digunakan yakni *flight number* (FN), waktu keberangkatan (*departure time*) dan kedatangan (*arrival time*), Estimasi waktu terbang antar bandara (*flight hours*), rute potensial antar bandara, kapasitas armada dan distribusinya, *sit connection time*, dan utilisasi harian berdasarkan jumlah jam terbang setiap kombinasi rute.

2. Pembentukan Kombinasi Rute:

Kombinasi rute dibentuk dengan memperhatikan *flight schedule* aktual. Rute divalidasi berdasarkan:

- a. Kecukupan waktu turnaround.
- b. Kesesuaian dengan jam operasional bandara.

c. Sit connection minimal 30 menit dan 40 menit.

3. Formulasi Model Optimasi:

Model matematis terdiri dari fungsi tujuan untuk memaksimumkan utilisasi. Variabel keputusan berupa biner: 1 jika rute j dipilih, 0 jika tidak. Batasan model yang digunakan sebagai berikut.

- a. Setiap flight number harus dilayani oleh salah satu rute.
- b. Jumlah rute yang dipilih tidak boleh melebihi jumlah pesawat tersedia.
- Setiap rute dimulai dan berakhir di home base.

4. Penyelesaian Model:

Model diselesaikan menggunakan Microsoft Excel Solver dan diverifikasi ulang. Simulasi dilakukan untuk berbagai skenario alokasi jumlah pesawat di wilayah Maluku dan Papua.

5. Evaluasi dan Pemilihan Rute Terbaik:

Setiap skenario akan diuji nilai utilisasinya. Rute dengan total utilisasi tertinggi dan cakupan layanan optimal dipilih sebagai solusi.

ANALISIS DAN PEMBAHASAN

1. Penentuan Kombinasi Rute

Penelitian ini menggunakan jadwal penerbangan yang tersedia untuk wilayah Maluku dan Papua. Terdapat 5 bandara yang perlu dilayani untuk wilayah Maluku yaitu bandara di Langgur (LUV), Saumlaki (SXK), Ternate (TTE), Sorong (SOQ) dan Ambon (AMQ) sebagai *home base*. Sedangkan untuk wilayah Papua terdapat 4 bandara yaitu Biak (BIK), Timika (TIM), Jayapura (DJJ) dan Nabire (NBX) sebagai *home base*. Bandara-bandara tersebut memiliki jam operasional yang berbeda dan hanya beroperasional kurang dari 17 jam per hari. Berdasarkan jadwal yang tersedia, kemudian dibangun kombinasi rute yang memenuhi kriteria *sit conncetion* 30 menit dan 40 menit. Contoh kombinasi rute yang hasilkan dijelaskan pada Tabel 2.

Tabel 2. Kombinasi Rute Ke-1

KR	Hari ke	DT	AT	FN	DES	FH	U
	1	8:10	9:30	7644	SXK	7,000 4,250	56,25%
		10:00	11:25	7645	AMQ		
		11:55	13:20	7642	TTE		
1		14:00	15:25	7643	AMQ		
1		16:00	17:25	7646	LUV		
	2	6:00	7:25	7647	AMQ		
		11:55	13:20	7622	LUV		
		14:00	15:25	7623	AMQ		

Keterangan: KR=Kombinasi Rute; DT=departure time; AT=Arrival Time; FN=Flight Number; DES=Destination; FH=Flight Hours; U=Utilisasi.

Berdasarkan hasil kombinasi dengan conncetion 30 menit didapatkan 54 kombinasi untuk wilayah Maluku dan 20 kombinasi untuk wilayah Papua. Sedangkan dengan sit conncetion 40 menit didapatkan 8 kombinasi untuk wilayah Maluku dan 1 kombinasi untuk wilayah Papua.

2. Penentuan Rute Terpilih

Tuiuan penelitian adalah untuk memaksimumkan utilitas dari pesawat sehingga perlu ada pengembangan pada model aircraft routing vaitu pada fungsi tujuannya. Berikut model matematis yang telah di kembangkan sesuai dengan fungsi tujuan:

Fungsi Tujuan:

Maximum
$$\sum_{h=1}^{2} \sum_{j=1}^{54} u_{jh} x_{jh}$$
Batasan
$$\sum_{i \in \mathbb{R}} a_{ijh} x_{jh} \le 1 \quad \forall i$$
(6)

$$\sum_{j \in \mathbb{R}} a_{ijh} x_{jh} \le 1 \quad \forall i \tag{7}$$

$$\sum_{i \in P} \sum_{h \in H} x_{jh} = N \tag{8}$$

$$x_{ih} \in \{0,1\} \tag{9}$$

Notasi:

: indeks rute (j = 1, 2, ... R)

: himpunan rute : indeks *flight number*

: himpunan *flight number* (i = 1,2,...F)

: indeks wilayah yang dilayani

: himpunan wilayah yang dilayani (h = 1, 2...H)

: utilitas pesawat rute ke j wilayah h

: jumlah pesawat yang tersedia

$$a_{ijh} = \begin{cases} 1, jika \ flight \ ke \ i \ melayani \ rute \ ke \ j \ wilayah \ h \\ 0, jika \ tidak \\ x_{jh} = \begin{cases} 1, jika \ rute \ ke \ j \ wilayah \ h \ terpilih \\ 0, jika \ tidak \end{cases}$$

Fungsi tujuan (6) model ini adalah untuk memaksimumkan utilutas pesawat wilayah Maluku dan Papua dengan rute *j* yang terpilih. Batasan pertama (7) bertujuan untuk memastikan setiap flight number ke i melayani rute ke j seluruh wilayah. Batasan kedua (8) memastikan jumlah pesawat yang ditugaskan tidak melebihi jumlah pesawat yang tersedia. Batasan terakhir (9) untuk memastikan nilai biner pada decision variable. Berikut formula untuk menghitung utilisasi setiap setiap hari pada setiap kombinasi rute yang telah

$$Utilisasi = \frac{Flight Hours}{Flight Hour per Day}$$
 (10)

3. Analisis Hasil

Terdapat 4 skenario kombinasi jumlah peswat untuk setiap wilayahnya seperti yang dijelaskan pada Tabel 3. Nilai utilisasi tertinggi dari keempat skenario yang di bentuk berada pada skenario kedua dengan nilai 4,9333 dengan jumlah pesawat untuk wilayah Maluku 3 unit dan wilayah Papua berjumlah 2 unit sehingga total keseluruhan pesawat yang di butuhkan sejumlah 5 unit. Pada wilayah Maluku dan Papua terdapat beberapa flight number yang dilayani dua hari sekali karena bukan home base pesawat. Empat skenario yang sama juga diuji sensitivitasnya dengan sit connection 30 dan 40 menit. Berdasarkan hasil pada Tabel 3, sit connection 30 menit pada skenario kedua menunjukan utilisasi paling maksimum untuk kedua wilayah dibandingkan 40 menit. Pada sit connection 40 menit ada beberapa 2 destinasi pada tiap wilayah yang tidak terlayani karena jam operasional tidak mencukupi jika menggunakan sit connection 40 seperti yang dijelaskan pada Tabel 4.

Tabel 3. Utilisasi Skenario Perbaikan

Skenario	Wilayah	Jumlah Pesawat Tersedia	Total Utilisasi dengan <i>Sit</i> <i>Connection</i> 30 Menit	
1	Maluku	4	92,33%	
1	Papua	1	92,3370	
2	Maluku	3	98,67%	
	Papua	2	98,0770	
3	Maluku	2	87,33%	
3	Papua	3	07,3370	
1	Maluku	1	64,33%	
4	Papua	4	04,3370	

Tabel 4. Uji Sensitivitas Sit Connection

Parameter		Sit Connection				
		30 Menit	40 Menit			
Total Ut	ilitas	98.67%	90.83%			
Destinasi yang tidak	Maluku	-	Sumlaku dan Sorong			
terlayani	Papua	-	Jayapura dan Timika			
Jumlah Pesawat	Maluku	3	8			
yang dibutuhkan	Papua	2	1			

Berdasarkan hasil uji skenario jumlah pesawat yang ditugaskan untuk tiap wilayah, flight scheduling dan jam operasional bandara masing-masing wilayah serta kombinasi rute yang menghasilkan utilitas paling tinggi yang terpilih, didapatkan 3 rute harian wilayah Maluku dan 2 rute harian wilayah Papua dengan kombinasi rute pada Tabel 5 dan Tabel 6.

Tabel 5. Kombinasi Rute Terpilih Wilayah Maluku

KR	Hari ke	DT	AT	FN	DES	FH	U
		8:10	9:30	7644	SXK	5,5833	42,08%
	1	10:00	11:25	7645	AMQ		
5	1	11:55	13:20	7642	TTE		
		14:00	15:25	7643	AMQ		
	2	11:55	13:20	7622	LUV	2,8333	

KR	Hari ke	DT	AT	FN	DES	FH	U
		14:00	15:25	7623	AMQ		
		11:55	13:20	7622	LUV	4,2500	56,25%
	1	14:00	15:25	7623	AMQ		
		16:00	17:25	7646	LUV		
20		6:00	7:25	7647	AMQ	7,0000	
29		8:10	9:30	7644	SXK		
	2	10:00	11:25	7645	AMQ		
		11:55	13:20	7642	TTE		
		14:00	15:25	7643	AMQ		
	1	11:55	13:30	7635	SOQ	3,0833	30,83%
5.1	1	14:00	15:30	7639	AMQ		
51	2		13:30	7635	SOQ	2 0022	
	2	14:00	15:30	7639	AMQ	3,0833	

Tabel 6. Kombinasi Rute Terpilih Wilayah Papua

KR	Hari ke	DT	AT	FN	DES	FH	U
		8:00	9:00	7656	TIM	2,8333	35%
	1	9:30	10:30	7657	NBX		
2	1	15:35	16:25	7653	BIK		
2		6:25	7:20	7652	NBX		
	2	11:55	12:55	7654	DJJ	4,1667	
	2	13:30	15:05	7655	NBX		
	1	11:55	12:55	7654	DJJ	2 2500	
13	1	13:30	15:05	7655	NBX	3,2500	26,25%
13	2	8:00	9:00	7656	TIM	2,0000	
	2	9:30	10:30	7657	NBX		

Untuk wilayah Maluku kombinasi terpilih adalah kombinasi nomor 5, 29, dan 51 dengan home base bandara Ambon (AMQ). Sedangkan untuk wilayah Papua terpilih kombinasi 2 dan 13 dengan home base bandara Nabire (NBX). Rute terpilih berawal dan berakhir di bandara home base. Untuk rute wilayah Maluku, pada kombinasi rute 5 dan 51 pesawat menginap di AMQ (home base) pada hari pertama, sedangkan pada kombinasi rute ke 29 mengharuskan pesawat menginap di LUV. Hal ini karena adanya batasan flight scheduling, sit connection, dan jam operasional dari bandara tujuan selanjutnya. Untuk rute wilayah Papua, kedua kombinasi rute 2 dan 13 pesawat menginap di NBX (home base) pada hari pertama. Total flight hours yang dilayani kecil karena adanya batasan jam layanan setiap bandara sehingga sangat membatasi rute kunjungan dari pesawat. Semua flight scheduling terlayani dengan 5 pesawat tersebut. Dengan mengurangi jumlah pesawat yang digunakan, perusahaan dapat menghemat biaya operasional dan dapat menugaskan 1 unit pesawat ke destinasi lain yang lebih membutuhkan. Hal ini memberikan implikasi manajerial penting terkait efisiensi penggunaan armada dan strategi alokasi sumber daya.

KESIMPULAN DAN SARAN

Penentuan rute penerbangan regional perlu mempertimbangkan faktor strategis seperti lokasi home base setiap wilayah, sit connection yang ditetapkan perusahaan, serta jam operasional bandara tujuan. Hasil penelitian menunjukkan bahwa kebutuhan armada optimal untuk wilayah Maluku adalah tiga unit pesawat, sedangkan untuk Papua adalah dua unit pesawat, sehingga total kebutuhan hanya lima unit pesawat. Jumlah ini lebih rendah dibandingkan kondisi eksisting perusahaan yang mengoperasikan enam unit pesawat dengan tingkat utilisasi lebih rendah. Dengan mengurangi jumlah armada, perusahaan dapat menekan biaya operasional sekaligus mengalokasikan satu unit pesawat untuk destinasi lain yang memiliki kebutuhan layanan lebih tinggi.

Hasil simulasi juga memperlihatkan bahwa durasi sit connection sangat berpengaruh terhadap kelayakan rute. Dengan sit connection 30 menit, seluruh destinasi di wilayah Maluku dan Papua dapat terlayani dengan rata-rata utilisasi 98,68%, sementara pada sit connection 40 menit utilisasi turun menjadi 90,83% dengan dua destinasi tidak terlayani. Temuan ini menegaskan pentingnya strategi pengelolaan aktivitas ground handling agar dapat diselesaikan dalam batas waktu sit connection, sehingga jadwal penerbangan tetap optimal.

Secara ilmiah, penelitian ini memberikan kontribusi dengan menawarkan pendekatan optimasi rute berbasis kombinasi armada dan parameter operasional yang dapat meningkatkan utilisasi pesawat regional. Pendekatan ini juga dapat menjadi dasar pengambilan keputusan bagi operator maskapai maupun pembuat kebijakan dalam mengatur efisiensi jaringan penerbangan perintis.

Ke depan, penelitian dapat dikembangkan dengan memperluas cakupan wilayah, mempertimbangkan variasi jenis pesawat, integrasi jadwal pemeliharaan, serta lokasi pengisian bahan bakar dan *maintenance* untuk memberikan rekomendasi yang lebih komprehensif bagi perencanaan transportasi udara regional.

INFORMASI PENULIS

Penulis Pertama dan Koresponding

Maulin Masyito Putri – Departemen Teknik Logistik, Universitas Internasional Semen Indonesia, Kompleks PT Semen Indonesia (Persero) Tbk., Gresik, Indonesia, 61122.

Email: maulin.putri@uisi.ac.id

Penulis Pendamping

Ayu Rahmawati Persada – Departemen Teknik Logistik, Universitas Internasional Semen Indonesia, Kompleks PT Semen Indonesia (Persero) Tbk., Gresik, Indonesia, 61122.

Amanda Dewi Cahyani – Departemen Teknik Logistik, Universitas Internasional Semen Indonesia, Kompleks PT Semen Indonesia (Persero) Tbk., Gresik, Indonesia, 61122.

DAFTAR PUSTAKA

- [1] Bazargan M. Airline Operations and Scheduling: Second Edition. 2nd Edition. London: Routledge; 2016. https://doi.org/10.4324/9781315566474.
- [2] Barnhart C, Boland NL, Clarke LW, Johnson EL, Nemhauser GL, Shenoi RG. Flight string models for aircraft fleeting and routing. Transportation Science 1998;32. https://doi.org/10.1287/trsc.32.3.208.
- [3] Zhang Q, Chung SH, Ma HL, Sun X. Robust aircraft maintenance routing with heterogenous aircraft maintenance tasks.

 Transp Res Part C Emerg Technol 2024;160. https://doi.org/10.1016/j.trc.2024.104518.
- [4] Yan C, Kung J. Robust aircraft routing. Transportation Science 2018;52. https://doi.org/10.1287/trsc.2015.0657.
- [5] Thengvall BG, Yu G, Bard JF. Multiple fleet aircraft schedule recovery following hub closures. Transp Res Part A Policy Pract 2001;35. https://doi.org/10.1016/S0965-8564(99)00059-2.
- [6] M Lu M, Zhang X, Ge J. Fleet assignment model based on multi-objective linear programming: a case study for a newestablished airline. In: Zhou J, Sheng J, editors. Proceedings of the Sixth International Conference on Traffic Engineering and Transportation System (ICTETS 2022). Guangzhou, China: SPIE; 2023. p. 52. doi:10.1117/12.2668555.
- [7] Safaei N, Jardine AKS. Aircraft routing with generalized maintenance constraints. *Omega*. 2018: 111–22.doi:10.1016/j.omega.2017.08. 013.
- [8] Kannon TE, Nurre SG, Lunday BJ, Hill RR. The aircraft routing problem with refueling. *Optim Lett.* 2015:1609–24. doi:10.1007/s11590-015-0849-8

KONTRIBUSI PENULIS

M.M.P, dan A.R.P. bersama-sama mengembangkan model, mengolah data dan menulis *manuscript*. A.D.C. membantu mengumpulkan data dan menulis *manuscript*.

KONFLIK KEPENTINGAN

Penulis tidak memiliki konflik kepentingan.

KETERSEDIAAN DATA

Data tersedia dengan permintaan data kepada penulis.